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The concen~ation field in the neig~a~~ of a solid sphere in a Stokesstream 
at high P&let numbers is determined by the method of joining asymptotic sol- 
utions. A chemical reaction, whose rate is arbitrarily dependent on the con- 
centration of the diffusing matter close to the surface, takes place at the 
sphere surface. Dependence of the total diffusing flux at the sphere surface 
on the chemical reaction rate is determined. The phenomenon of diffusion 
flnx saturation with increasing P&let number is present, as in the case of first 
order chemical reaction Cl% Modes of the chemical reaction at the sphere 
surface are investigated. The distribution of concentration in the diffusion 
wake region is determined and its structure analyzed, The problem was solv- 
ed in [l] for the case of linear kinetics. 

Convective diffusion at the surface of a reacting particle in a homog~~s stream 
of visoous fluid was investigated in a number of publications, for instance [2,33. in 
which total absorption of reagent by the particle surface and, also, first order hetero- 
geneous chemical reaction were considered Cl, 43. It is interesting to investigate the 
diffision of reagent at a moving particle on whose surface a ohemical reaction takes 
place, when the dependence of the reaction rate of reagent close to the surface is 
more complex or, generally speaking, arbitrary. Problems of this kind appear, for 
instance, in investigations of reagent diffusion to the particle under conditions in which 
reaction at the particle surface conforms to the Langmuir kinetics and average cover- 
age of the surface (see, e, g., E5l). Examples of reactions of total order are widely 
hOWll‘ 

l. Statement of the problem. Concentration dis- 
tribution in the diffusion boundary layer, Convective 
diffusion of matter to a solid sphere in Stokes stream of viscous incompressible fluid 
whose velocity away from the sphere is u is considered. In the spherical system of 
coordinates r, 8 attached to the particle the dimensionless equation of steady convec- 
tive difihsion and the boundary conditions are of the form 
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where c is thhe concentxation of matter, 1c, is the stream function, P is the P&cl& 
nurnbez, a is the qhere t&his, fl is &e afpfus* czacB&stp Id is t$e con&ant of 
the reaction rate, f* fc) is the deperxdetxze af chemic&I reaction rate on reagent con- 
centration cbxe to the Irurface, and angle 9 is measured relative to the dir+z&ion of 
the stream. The sphere radius, stream velocity, and cokxcentration at infinity are used 
u Wits in Ect. (I* I)* 

The dirrxssionles Wsam functi~ of the Stokes fIow past the particle is of the 

Solution of the eqnat.Km of the diffusron botm&ry Iayer (I.31 undo conditiwr of 
total absorption of matkr at the sphere surfact% (k = m) was obtained in [Z] 

y (-+ , ix) = Se-W*dr, I-’ (+) = 0 (+ , + cw) 
0 
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( I. 5) 

4 z-w-+0, 24 It=0 = 0 

We seek for it a solution of the form 

u (29 0 = r (!q3) 
Z’ir S CD (A) (t - h)“s’*exp (- 5’) ah. 

0 

( 1.6) 

g = ‘12 z (t - A)+ (0 < t < to) 

Function (1.6) satisfies the equation and the last two boundary conditions (1, 5) for 
any kernel 0 (r) and in the interval 0 < t f to has the following properties: 

t 

limu= +&\ CI, (A) (t - A)-“V& 
z-0 3 

0 

(‘1 7\ 
..I 

lim (z’k%4 / 8.2) = - CD (t) 
54 

The first of boundary conditions (1.5) and properties (1.7) imply that function CD 
(2) is a solution of the integral equation 

V (5) @ (5) + K* f (LdD) - ap (5) = 0 (1.8) 

L*@ = s 0 (h) (5 - h)-Q dh. 
0 

where the following notation is used: 

p (x) = q (5) x-‘/8, K* = 3-“‘r-‘(2/3) ke, a = 2“‘~-1 (yQ) ( 1.9) 

f (5) s 2’9 (2/a) f* (2-““r-l (%/a) LZT) 

Function TJ (5) in Eq. (1.8) has the following properties: 

II: --_, 0, q tz) c* 3”~2-‘,‘yh 

zr 3 to, q (5) --_, 32,‘s2-“a (to - ~)‘/a 
and in the neighborhood of point r = 0 may be presented in the form of series 

rl(4 = i qptzn+l) is- , a() = 352-‘!a, 
n=o 

a, = IIs, . . . 

If function f (z) is continuous, then for 5 + 0 we have 0 (5) + box-“* + 
o (~-“S)I where bo is the root of equation (B is the beta function) 

H (bo) = boa, + K*f (b,B,) - ccc0 = 0, B, = B (V3, 2/3 (n + 1)) (1.X’) 

We assume that at point x0 = boBo function f (x) expands in series 

f (b&o + r) = f” 4 Art -f ; hktk, 
kc2 

f’ = f (b,B,) 

that is convergent in some interval. 
We introduce the following notation: 
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Let u$ co&dex togethex witi (1.16) the: series 
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Q [ri” (xl,- I A, I* 0, ?f, B,YO, IL* @)I = 0 (1. 18) 

which unlike (1.12) and (1.16) is algebraic with respect to the variable Y’. Introduc- 
tion of the new variable T = x’lr yields IaQ / a’~],~,,,,, # 0 and by the Cauchy the- 
orem there exists some neighborhood of point x ~0 at which series (1.17) is conver- 
gent. 

Let f(x) > 0 for z > 0 and f’(x) > 0 for -~<z<oo,then Eq. (1.10) has 
a single positive root b, > 0. Hence aII coefficients of series ( 1.1’7). (1.18) are 
positive. Noting that B, < Bo when n >/ i and 5 > 0, we obtain by induction 
that b, f b,“. Consequently series (1.17). (1.18) majorates (1.131, (1.14) and the 
latter is convergent. 

The complete solution in the diffusion boundary layer may be written, using funct- 
ion (I, .in the form 

dd) (%t t) = r-1 3 (3 ( y + ,+.t)+ (1.19) 

1 

1 s 2”‘r (2/s) o 
@ (h) (t - h)+exp 

C 
- ++] dh 

2. Distribution of concentration in the diffusion 
w a k e. I&gion of the giffusion wake whose boundary corresponds to 8 N E conhi- 

butes relatively little, N e , to the over-all diffusion flux to the particle curface. 
The concentration field in the wake has, however, a significant effect on the particle 
mass transfer in particles moving in the wake of the first [8,9]. 

For convenience we introduce in the diffusion wake region w the supplementary 
condition (of symmetry) (&T / Xl],,,, = 0 which in this case is equivalent to the 
condition of concentration boundedness. 

The estimate of individual terms of Eq. (1, l), (1.2) in the boundary layer convec- 
tive region R’(l) = (0 (E) < r - 2, 0 (Ed) < 9 < 0 (e2)} of the wake shows that 
there the right-hand side of the equation can be neglected, Hence concentration there 
depends only on the stream function and is constant along streamlines and equal to that 
at the exit from the diffusion boundary layer. Formula for the concentration in W(1) 
is obtained by joining with solution (1.19) and is of the form 

c(‘) (E) = CCd) (E, t (0)) l&-o, f=const = cCd) (E, to) (2. 1) 

In the diffusior wake inner region IV(*) = (0 (E) ( r - 1 < 0 (e-l), Q < 
0 (E3)) the radial transfer is insignificant. Equations and boundary conditions for 
c=O and S-+00 (C=E-~$) coincide with those obtained in [l] for the case 

of linear kinetics. The condition of joining with the solution in the convective bound- 
ary layer region IV(l) (for c --t co) implies that cc*) N v-e: Consequently for 
the boundary condition for y --t 0 and 6 = con& in the case of a reaction of order 
x we obtain 

fdvldyl - h@ = 0, ho = k&+U / 2, u = E-‘I’C(z) (2. 2) 
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Since 8 < 1 some ~rnp~~ca~o~ are possibk 
1) if k > 8(1-x)ia (Lo > I), the first term in the boundary condition (2.2) can 

be neglected from which for c(*) we have 

c(*) (y = 0) = 0 (2. 3) 

2) when k < dzwx)f* (A,, <I) , the second term in (2.2) is immaterial, and 
for the concentration we have 

P@, I ayl V==o, e=const = 0 (2.4 

If k@-l)lr - 1 it is necsrrary to take into account both terms in formula (2.2). 
The most interesting case of the dtffusion boundary layer ir when ke - i. Then for 
X < 3 boundary condition (2:3) is valid for c(‘) , and for X ) 3 it is cooditfon 

(2.4). For % = 3 the problem of concentration in the inrkr zone most br solved 
with the total boundary condition (2.2). 

Below we restrict our investigation to the case of 0 < x ( 3_ 
The solution for concentration distribution in JV2) is of the form [II 

C(2) = (28)L” r (V8) &t/4, (- l/n, 1, - 5 / (Zy)) 
(2.5) 

where @ (a, c, z) is a degenerate hypergeometric function. 
The region Of the t&l&g Stagnation point ma9 = (0 < 0 (8), r - % < 0 (8)) 

in which radial and tangentid trarisfer takes place is not corksidered here. We would 
only point out that the co&ribotion of HV) to the total diffiz*on &x on the spher& 
is of order 8. A similar pro&m of total absorption of the dissolved matter on the 
particle SInface (k I cm) was inveetigatjed in ES, 1fBJ by numaricrl m&ho&. 

DifIksi~~~ along streamliner in the mking rcgton W(‘) = (0 (8-l) < r, 9 < 

0 (8)) can be neglected. Omitting inttrm@diate -1% which are obWoed similarly 
to Cl], we present the final formula for c~~~~~ 43isW~tto.n in that regiti 

(2.61 

where lo is a modified lksel function and CT(‘) (E) is defined by formula (2. U. 
Formulas for concentration distribation in ragiont m and WC”, of the diff&- 

ion wake show that the distribution in these dfffers from that ia the case of total absor- 
ption (k = IS) only by the pmportlonality coefflckot A [l] which contains the 
additional term with @ (to), and this rc&ts in an increase of concentr%#ion in these 
regioos in compraisoo with the limit case of k = 00. 

3. Diffusion flux on the sphere outface. Using the 

~~al~~~l*8~f~~~~~, ~~~f~~~~~~ i on the 
sphere arrface the eqiratfsn 

j (t) = gWd) /&I,,, = 0 (4 Ia (c(*d) + 4 / m.+-o 

From formula ( 1.4) for ted with aUowaoce for propeM~(1.7) we obtain the 
following relation between functions @ (t) and 1 (t) : 
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@ PI = r (f: + - e (-g)“* 9-l @I i (4 
3 

(3.1) 

Substituting this expression for a (t) into Eq. (1.8) we obtain the rmnlinear in- 
tegral equation for the local diffusion flux j on the sphere surface 

i(t) -- 21,,rk(s,o~ f (~ - 8 (-+)“’ W) f3*2) 

f 

Gej = s j (A) q-1 (h) (t - h)“f* dh 
0 

Let us investigate two limit cases: 1) ice > 1 and 2) i&~ (( 1. 
For the local flux 1 the first case corresponds to a fixed 8 and k --t 00 while 

the second relates to fixed k and e + 0. 
In the first case, because of condition f (0) = 0 , we obtain in the zero approx- 

imation the equation 

3”‘go G*j" 9= - 

er PM 
(k 4 00, E = mist) 

whose solution is of the form 

(3.3) 

which corresponds to the limit diffusion flux that is determined by the ~c~tration 
distribution c’*d’ (1.4). 

When function f (5) corresponds to a reaction of order x, i. e. 

f (x) = ;Fx, x > 0 (3.4) 

the next approximation with respect to parameter k is determined by the Abel equat- 
ion 

G*jl =I - (r fj"jl'", cI = E-f3”$~ (94 k-l 1 x (3.5) 

from which in conformity with [ll] we obtain with an accuracy to 0 (k+JX) the 
formula for the diffusion flux 

where f = j” (t) is determined by formula (3.3). 
Formula (3.6) shows that the diffusion flux increases with increasing k, while the 

increase of index x in the “reaction law” results in its decrease. 
Determination of the integral in (3.6) yields for the total f&x the formula 

I=l*&-C(X)K*-r’x] 
(3.7) 

where 1, isthetotalfluxfor k = 00. In the case of linear kinetics (x = 1) 
we have C (1) zz 0.46 [I]. 

In the second limit case (E --f 0) the integral equation (3.2) shows that in the 
principal approximation with respect to E the local diffusion fluxes over the whole 
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sphere surface (except the trailing stagnation poitit neighborhood 
0 (e-lle$}) 

CJ = {I t, - t 1 ( 
are the same, and that for a reaction of order x 

i (4 = kf* (4 jr+m = k (e ---, 0, k = const) (3.3) 

which means that for k < P”s the reaction proceu is close to the kinetic mode over 
the whole sphere surface. 

Since G * 1 + 00 when t-t to, a region of the type of boundary layer (T= 

{I to - t 1 < 0 (e-l”)) in which the local diffusion flux rapidly dtcrtaserr from 
unity to zero appears near the trailing stagnation point. 
U to the total diffusion flux is insignificant. irence 

The contribution of region 

I = 4n kf* (1) (E --f 0, k = const) (3.9) 

It will be seen that that the expression for diffusion fluxes is independent of the 
P6ckt number (E). This means that in this case, as in that of ffrst ordtr rtaction 
[ll, saturation of the diffuion flux takea place. This phenomenon is related to that 
for any finite rate surface reaction the Sherwood number approaches the constant value 
(3.9) dtttrmintd by the surface reaction kinetics, as the P&let number is increased. 

The obtained reauitr make it pwribie to investigate the taunt of surface reaction 
at the particle surface, as wab done in Cl]. Et appears that, as in the case of first order 
reaction Cl], a region of the diffusion reaction modt always txists ntar the trail&g 
stagnation point. while near the leading stagnation point the kinetic mode is genera- 
lly absent. 

Note that the local diifusion flux in the small neighborhood of the trailing stagnat- 
ion point exceeds the local flux under conditions of total absorption of matter by the 
particle surface. This is explained by that a region of the diffusion mode of reaction 
(i. e. C-t0 , as 040, and r= 1) is aiways present. while the stream of 
fluid in that region is itrr starved than in the case of total absorption. 

Let us investigate the dependence of dWuaion of matter in the neighborhood of the 
leading stagnation point b = (t - 1 <O(e) and IT - 0<0 (e)} in a rtciction of 
order x. For kP-“* = 0 (1) for the local diffusion flux in the neighborhood of 
0 - a~ we have 

(3.10) 

Let us consider the behavior of the first coefficient of series (Ll3) depending on 
variation of parameters x and h. The equation for b, may be written in the form 

H(2, h, x) = 0, H(s, h, x) = x f Lxx - 1 
(3.11) 

b, = 2’!‘r (s,Q B~‘t, h = ‘ig ke2”‘I’ (1/3) 

For z = 0 H(0, h, X) < 0 and for z = 1 H(1, I, x) > 0. Siflct H,’ > 0, 

hence for z > 0 Eq. (3.11) has a single root in the interval i0, il. 
Let x1 < xq and z1 be a root of Eq. (3.11) for x = x1 and za for x = x, (k 

is fixed in both cases). Th+ inequality tl < 2% is then sttisfitd. as foUowr from the 
inequality a(~~,, h, xp) = z1 + I+* - 1 = kIw* (zlxlcX’ - 1) < 0. Similarly, if 

& < a, and 2%’ is the root of Eq. (3.11) when 5 = hl, or tC* is acb root for 

LX&, thtncforfixed x 1 ~~*>a%*. 
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These properties and formula (3.10) for the diffution flux imply that in the neigh- 
borhood of the leading stagnation point the local flux increases with increasing k and 
diminishes with increasing reaction order. 

For intermediate values of ke the sol- 
ution of integral equation ( 1.8) was obt- 
ained by numerical methods. Function 
j (t) for x = 1/2, 1.0, and 2.0 is 

shown in Fig. 1 by dash, solid, and dash- 
dot lines, respectively.Curves I, 2 and 
3 correspond to R* = 0.1, 1 and 10. 
Dependence of the total fluxon a particle 

on K* is shown in Fig. 2 for the same 
values of X . In this case I, is the limit 
flux on a sphere and corresponds to k + 
00. 

Note that the representation of func- 
tion~~~) intheform ofseriesfLl3) makes 
possible the representation of the local 
flux in the form of series 

i (4 = in + (3.12) 

QnJn 
~(~~-1) i x [ao”3’/‘r (l/J + 

q,@(xx-‘)‘xJ-lt”S + . . , , 

II zz ekl’%B 1 
Fig. 1 

The nume.r,ieal solution of the integral equation (3.2) Shows that for fairly high 

K* series (3.12) can be restricted to its first two terms 

Fig. 2 

for calculating the total flux. ‘I&V, for example, for ?C = “is and K* -‘ 0. f 

the contribution of the residual term is about 15% and rapidly diminishes with an in- 
creaseof K*; for x=2 and K*= 0.1 this contribution is about 2Ho. 
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Dependence of the total fiux ou the velocity constant can, thus, be represented in a 
wide range of R* values by the approximate formula 

I -= a - b. (K*) 
10 a 

+ b, (k’*) pr 
a 0 

In concluding wewouM point out that the above results can be extended to more 
complex fIow fIeIds (see, e. g, , El23 1. 

REFERENCES 

1. P o li an i n, A. D. and S e rg e e v, Iu. A., Diffision to an absorbing particie 
with mixed kinetfa. PMM, Vol. 43, No. 4. 1977. 

2. L e v i c h, V. G. t ~y~~o~e~~l ~y~yn~~~ (English tr~ati~~~ Pnmtice- 
HaI& Englewood Cl%, New Jersey, 1962. 

3, R i m m e r, P. L, Heat transfer from a sphere in a stream at small REynoIds num- 
bOEI). J. Fluid Mach. v VoL 32, pt. r, 1968. 

4, Gupalo, Iu. P. and Riazantsev, Iu. S., O~rn~~dhe~t~from 
a sphtrtcal particle in a laminar stream of viscous f&id. PMM, VoL 35, No. 2, 
1971. 

5. F r a n k --K a m e n t t s k i i, D. A., DifUion and Heat Transfer in Chemical 
Kinetics. Moscow, “Nauka”. 1967, 

6. S i n, P. i% and N e w m a n, J., Mass transfer to the rear of a sphere in Stokes 
flow, Internat. J, Heat and Mass ‘I’rar~~&r, VoL l0, No. 12. 1967. 

7. S u t t o n, W. G. L., On the equation of diff&ion in a turbulent medium. Proc. 
Roy. Sot. Ser. A, Vol. 182, No. 988, 1943, 

8. Gupalo, Iu. P.. Polianin, A. D., and Riazantsev, Iai. S., ORrnm 
transfer between particles at the stream ax&s at high P&et numbers. fiv. 
Akad. Nauk. SSSR, MZhG, No. 2, 1977. 

9. P o I i a n i n, A. D., Distribution of concentration in the diffusion wabe Of a 
particle in a Stoker &am. Izv. Akad. Nauk SSSR, MZhG, No. l.,1977. 

10. N e w m a n, J., Mass transfer to the rear of a cylinder at high Schmidt numbers. 
Ind. and Engng. Chem. Fundam., Vol. 8, No. 3, 196% 

11. M u” n t z, G. Integral Equations, VoL I.. Leningrad -Moscow, Gostekhiedatt934. 

12. GupaIo, Iu, P., Polianin, A. D.. and Riazantsev, I& S., Diff- 
u&a to a particle at urge P&let numbers in the case of arbitrary =iSYm- 
metric flow over a viscars fluid. PM& Vol. 40, No. 5, f976. 

Translated by J. I. D. 


