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The concentration field in the neighborhood of a solid sphere in a Stokesstream
at high Péclet numbers is determined by the method of joining asymptotic sol-
utions, A chemical reaction, whose rate is arbitrarily dependent on the con-
centration of the diffusing matter close to the surface, takes place at the
sphere surface, Dependence of the total diffusing flux at the sphere surface
on the chemical reaction rate is determined. The phenomenon of diffusion
flux saturation with increasing Péclet number is present, as in the case of first
order chemical reaction [1], Modes of the chemical reaction at the sphere
surface are investigated. The distribution of concentration in the diffusion
wake region is determined and its structure analyzed. The problem was solv-
ed in [1] for the case of linear kinetics.

Convective diffusion at the surface of a reacting particle in a homogeneous stream
of viscous fluid was investigated in a number of publications, for instance (2,3}, in
which tota] absorption of reagent by the particle surface and, also, first order hetero-
geneous chemical reaction were considered [1,4]. It is interesting to investigate the
diffusion of reagent at a moving particle on whose sarface a chemical reaction takes
place, when the dependence of the reaction rate of reagent close to the surface is
more complex or, generally speaking, arbitrary. Problems of this kind appear, for
instance, in investigations of reagent diffusion to the particle under conditions in which
reaction at the particle surface conforms to the Langmuir kinetics and average cover-
age of the surface (see, e,g., [5]). Examples of reactions of total order are widely
known.

1, Statement of the problem, Concentration dis-
tribution in the diffusion boundary layer Convective
diffusion of matter to a solid sphere in Stokes stream of viscous incompressible fluid
whose velocity away from the sphere is U is considered, In the spherical system of
coordinates r, @ attached to the particle the dimensionless equation of steady convec-
tive diffusion and the boundary conditions are of the form
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where ¢ is the concentration of matter, P is the stream function, P is the Péclet
number, ¢ is the sphere radius, D is the diffusion coefficient, %’ is the constant of
the reaction rate, f* (c) is the dependence of chemical reaction rate on reagent con-
centration close to the surface, and angle § is measured relative to the direction of
the stream. The sphere radius, stream velocity, and conicentration at infinity are used
as units in Eq, (1. 1}

The dimensioniess stream fanction of the Stokes flow past the particle is of the
form sin29

V= (P —gr+ o) 25 (192

Below, the Péclet number is assumed high, i.e. 6<€ 1, asisusual for liquids.
An asymptotic analysis of problem (1, 1), (1.2) for € — ( was carried out in [1] in
the case of linear kinetics (* (¢) = ¢} .

Several characteristic regions with different mass transfer mechanisms can be dis~
tinguished in the particle neighborhood when &< 1 [6]. These are: the cuter re-
gion e, the region of the leading point b, the diffusion boundary layer d, and the
region of the diffusion wake which, in tumn, consists of subregions Wt {i=1,2,3,

4). In each of these regions Eq, (1. 1) is approximately adjusted by separating princi-
pal terms of expansion in the small parameter ¢. Agreement between solutions in in-
dividual regions is obtained by asymptotic merging at their nominal boundaries,

The predominant part in the transfer of 2 dissolved constituent to the particte sur-
face is played by the convective diffusion process in the diffusion boundary layer
d = {r — 1 <0 (e), O(e) < 8} which consists of canvection along the sphere sr-
face and diffusion in the transverse direction,

Substituting variables

E=eW t=T(0) =Y} 3[x—0-1Y,sin20]
and retaining the principal terms of expansion in parameter e, from formulas (1.1
and (1, 2) we obtain

(%_g*:l%}cm%@ 0<t <o) (1.3
() Bc) ] OE — ehf* (¢ gy = 0, D fue—1

¢@lg=1, to=0t(0y=V)3n/8

() =YV 3sinT° (@), t=T[T°()]

Solution of the equation of the diffusfon boundary Iayer (1, 3} undet condition of
total absorption of matter at the sphere surface (k = o0) was obtained in [2]

D (E, 8) = T2 (Y3) p (s, B/ 92) as

1)

a) = feran, D) =a( )
9

As in [1], we camry out the substitution 2z =%/, §'/* andseek the solution of
problem (1.3) in the form ¢ == ¢@ - u. For the unknown function & we obtain

the equation
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We seek for it a solution of the form
g ¢ .
w5, 1) = 7y | ® () (¢ — M)*rexp (— L) dh

INCA) p

(1.6)

E=Thz(t—M" 0t<<ty)
Function (1. 6) satisfies the equation and the last two boundary conditions (1, 5) for
any kernel  (¢) and in the interval 0<<C ¢ < ¢, has the following properties:
—1/g

T (%)

! (1. M
S(p (M) (¢ — A)*/dA S
0

lim (z'30u / 02) = — @ (¢)
20

limu =

Z—>0

The first of boundary conditions (1, 5) and properties (1. 7) imply that function
(z) is a solution of the integral equation

N (2) ®(z) + K*f Lx®) — ap (z) = 0 (1.8)

Le® = { @ (4) (z — A)y5dh
9
where the following notation is used:

@) =n@ah, K* =310 ke, a=20Tagy 9
f (@) = 2T Cfg) f* 27712 (5) )
Function 7 (z) in Eq. (1.8) has the following properties:
Zes O, 'l'] (.’E) _ 3:‘/,2-1,'31_:/‘
7 — to, 7 (x) - 32",2—l/; (to — I)l/’
and in the neighborhood of point z = () may be presented in the form of series
n(z) = 3 a,z@n) /3 g =3 270 gy = s,
n=0
If function f (z) is continuous, then for 2 — 0 we have @ (z) — bgz~'/s +
0 ('), where by is the root of equation (B is the beta function)
H (bo) = boay + K*f (byB,) — aay =0, B,= B (Y3, ¥s (n + 1)) (L.10)
We assume that at point z, = b,B, function f (z) expands in series
FBoBo+ 1) =+ Mt + 2 Mt = f (boBy)

that is convergent in some interval,
We introduce the following notation:
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Q@) M, 2 Al p @ =n@y+ K*pAQy) + (L1
F(p (), M, Ay))

F (@), A () = K (1 — ay"p (2)) + K* k§2 M [A ()1

where A (y) issome, so far unspecified linear operator. Equation (1.8) may be
written in the form

QIn@), Mo Ay, Livy, p(@)] =0 (1.12)
Yy =y (@ = O (2) — byas

Its solution is then sought in the form of series

= 3| bt /s (1.13)

hit i §

Substituting (1. 13) into Eq. (1.12) and equating coefficients at like powers of z,
we obtain for the determination of coefficients b, the recurrent system

”n
b= — {ao + K*MByl™{ 3 tebuy + Fa (b 2, Lg)} (.19
o=y

where Fn (i, Ay, Lixy) dependson by, by, . . ., ,., and is determined as the co-
efficfent at  z(3"*1)/% in the expansion of F (u, Ay, L « y) in series, after the
substitution into it of (1. 13), i, e.

o0
F (W, Ay, Lay) = D} Fozizntis /3
Tz=y

Series (1, 13}, (1.4) is convergent is some neighborhood of zero.
To prove this we consider the series with coefficients
(1,15)
® *aa’"l{z Ja | B% p— F (% Ay, L*y"‘)}

k=1
== 60

The terms of this series are determined as the forma} solution of the nonlinear in-
tegral equation

Q (1% (2}, Ayo Oy y*, Lay*, p*(z)] =0 (1.18)
y¥* = Z bﬂ*z&m'n fS, p¥{z) = 2 | " ! /3
=1 ==

£}
N e I TATL

n==s}

Let us consider together with (1. 16) the series
k3
{Eiasf i — Fn % — 1A s B}, b =bo (L.17
kel
where By = B.E(y), E is an identic operator, B, = B(Yy, 2/s); the coefficients of
series (1,17) can be obtained as the formal solution of equation

R §
bn =gy
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Q [n*(2)— | A | O, 4°, Boy®, p*(2)] =0 (1.18)
Y= b oz(2n+l) /3

which unlike (1, 12) and (1. 16) is algebraic with respect to the variable 3°. Introduc-
tion of the new variable 1= z'" yields [/ 3Tl g yo 5 0 and by the Cauchy the-
orem there exists some neighborhood of point z =0 at which series (1. 17) is conver-
gent,

Let f(z) >0 for z>0 and f(x) >0 for —oo < z < oo, then Eq. (1. 10) has
a single positive root b, 2> 0. Hence all coefficients of series (1, 17), (1. 18) are
positive. Noting that Bn < By when n > 1 and A, > 0, we obtain by induction
that bn < bn°. Consequently series (1. 17), (1, 18) majorates (1. 13), (1.14) and the
latter is convergent,

The complete solution in the diffusion boundary layer may be written, using funct-
ion (P ,in the form

e@ @) = T () 7 (505 )+ (1.19)

t
1

—————— —_ —2/s _— Es
T Scb(x)(t M)~/ exp [ T )]dx

0

2, Distribution of concentration in the diffusion
wake, Region of the diffusion wake whose boundary corresponds to 8 ~ e contri-
butes relatively little, ~ &, to the over-all diffusion flux to the particle surface.
The concentration field in the wake has, however, a significant effect on the particle
mass transfer in particles moving in the wake of the first [8, 9].

For convenience we introduce in the diffusion wake region W the supplementary
condition (of symmetry) [dc / 30)g—, = O which in this case is equivalent to the
condition of concentration boundedness.

The estimate of individual terms of Eq. (1. 1), (1.2) in the boundary layer convec-
tive region W) = {0 () <<r — 1, O (%) << P << O (€%} of the wake shows that
there the right-hand side of the equation can be neglected. Hence concentration there
depends only on the stream function and is constant along streamlines and equal tothat
at the exit from the diffusion boundary layer. Formula for the concentration in /(1)
is obtained by joining with solution (1, 19) and is of the form

¢ (E) = c@ (g’ t (9)) le—»o, t=const = c(@ (g’ to) (2.1

In the diffusior wake innerregion W® = {0 (e)<<r —1 < O (e, v <
0 (83)} the radial transfer is insignificant, Equations and boundary conditions for
{ =0 and s—> o ({ = &%) coincide with those obtained in [1] for the case
of linear kinetics. The condition of joining with the solution in the convective bound-
ary layer region W (for { — oo) implies that ¢ ~ }'e. Consequently for
the boundary condition for y — 0 and 6 = const in the case of a reaction of order
* we obtain
[0v/8Yy] — Agv* = 0, Ao = ke(=D/2 p = g~Vsp® (2.2
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Since & <€ 1 some simplifications are possible:
1 if k>> e079/2 (Ay > 1), the finst term in the boundary condition (2. 2) can
be neglected from which for ¢® we have
c@® (y = O) = () (2.3)

2) when k< e(t*)/2 (A, <€ 1), the second term in (2. 2) is immaterial, and
for the concentration we have

[Ge® ] 6‘y],,,,o' g==const = 0 (2.9

If ket-U/2 ~ 1 it is necessary to take into account both terms in formula (2, 2),
The most interesting case of the diffusion boundary layer is when k& ~ 1. Then for
% << 3 boundary condition (2.3) is valid for ¢® , and for % > 3 it is condition
(2.4). For % = 3 the problem of concentration in the inner zone must be solved
with the total boundary condition (2. 2),
Below we restrict our investigation to the case of 0 <= % < 3.
The solution for concentration distribution in W@ is of the form [1]

c® = (28): T (3/3) Ay ® (— Yy, 1, — L/ (29))

Da,c,z) =1+ i afa+1)...(abk—1) 2*
k=1

(2.5)

ce+1)...(c+k—1) &I

where @ (a, ¢, 7) is a degenerate hypergeometric function,

The region of the trailing stagnation point W® = {8 < 0 (e), r — 1 < O (e)}
in which radial and tangential transfer takes place is not considered here. We would
only point out that the contribution of W(3) to the total diffusion flux on the sphere
isof order €. A similar problem of total absorption of the dissolvéd matter on the
particle surface (k = oo) was investigated in [6, 10] by numerical methods.

Diffusion along streamlines in the mixing region W®) = {0 (™) << r, P <<
O (g)} can be neglected, Omitting intermediate results, which are obtained similarly
to [1], we present the final formula for concentration distribution in that region

¢ 24 g#d * 2.6
e, p) = § .g.p_ oxp {... —F’“—'E‘—} I (%_) c® %) dE* (2.6)
where [, is 2 modified Bessel function and ¢ (§) is defined by forrmla (2. 1).

Formulas for concentration distribution in regions W® and W® of the diffus-
ion wake show that the distribution in these differs from that in the case of total absor-
ption (k = oco) only by the proportionality coefficient A [1] which contains the
additional term with (D (f,), and this results in an increase of concentration in these
regions in compraison with the limit case of & = oo.

8, Diffusion flux on the sphere surface  Usingthe
integral equation (1,8) for function @ , we obtain for the diffusion flux / on the
sphere surface the equation

j(€) = [0c@ [Or]rmy = &7 () [0 (D + 1) / OElgmo

From formula (1.4) for ¢,® with allowance for properties (1,7) we obtain -the
following relation between functions @ (f) and j (¢)
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2t/s 2\ 1
- PR R g 3.1
OO =t = () oo O
Substituting this expression for @ (f) into Eq, (1.8) we obtain the nonlinear in-

tegral equation for the local diffusion flux j on the sphere surface

. k 2'/sp 2\'" (3.2

t o a — il : *
1

Gej = S (M) (M) (¢ — N)/dh

Let us investigate two limit cases: 1) ke > 1 and 2) ke < 1.

For the local flux j the first case corresponds to a fixed ¢ and k — co while
the second relates to fixed & and € — 0,

In the first case, because of condition f (0) = 0 , we obtain in the Zero approx-
imation the equation

_3hB,

Gaj° = T

(k— oo, & = const)

whose solution is of the form

. w3 ,
]o=elmn(t)t—/, (3.3)

which corresponds to the limit diffusion flux that is determined by the coxicentration
distribution (P (1.4).
When function f (x) corresponds to a reaction of order %, i.e.
f@=a% x>0 (3.4
the next approximation with respect to parameter % is determined by the Abel equat-
ion
Gajl = — o [[°It/%, o= 13T k" (3.5)
from which in conformity with [11] we obtain with an accuracy to O (k~2/%) the
formula for the diffusion flux

j=p =k V*””" ()5 &[f‘(mm (t—A)y*rdh, k=>oo (3.6
<]
where j == j° (¢} is determined by formula (3. 3).
Formula (3. 6) shows that the diffusion flux increases with increasing k, while the
increase of index ® in the "reaction law" results in its decrease,
Determination of the integral in (3, 6) yields for the total flux the formula

I=I[1—Ce)K='*

where [, is the total flux for % = oo. In the case of linear kinetics (x = 1)
we have C (1) = 0.46 [1]

In the second limit case (¢ — () the integral equation (3, 2) shows that in the
principal approximation with respect to & the local diffusion fluxes over the whole

(3.7
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sphere surface (except the trailing stagnation point neighbothood 0 = {| t, — ¢ | <C
O (e71/8)}) are the same, and that for a reaction of order
J@) =kf*(©)|ron =k (e—0,k = const) (3.8)
which means that for k<& P'» the reaction process is close to the kinetic mode over
the whole sphere surface,
Since G %1 —> co when ¢-—-¢,, aregion of the type of boundary layer 0=
{lty — t| < O (e1#)} in which the local diffusion flux rapidly decreases from
unity to zero appears near the trailing stagnation point. The contribution of region
G to the total diffusion flux is insignificant, Hence

I = 4n kf* (1) (e —> 0, k = const)

Itwill be seen that that the expression for diffusion fluxes is independent of the
Péclet number (e). This means that in this case, as in that of first order reaction
{1], saturation of the diffusion flux takes place. This phenomenon is related to that
for any finite rate surface reaction the Sherwood number approaches the constant value
(3. 9) determined by the surface reaction kinetics, as the Péclet number is increased.

The obtained results make it possible to investigate the course of surface reaction
at the particle surface, as was done in [1]. It appears that, asin the case of firstorder
reaction [1], a region of the diffusion reaction mode always exists near the trailing
stagnation point, while near the leading stagnation point the kinetic mode is genera-
lly absent,

Note that the local diffusion flux in the small neighborhood of the trailing stagnat-
ion point exceeds the local flux under conditions of total absorption of matter by the
particle surface, This is explained by that a region of the diffusion mode of reaction
(i,e. ¢—>0 ,a 0—0, and r = 1) is always present, while the stream of
fluid in that region is less starved than in the case of total absorption.

Let us investigate the dependence of diffusion of matter in the neighborhood of the
leading stagnation point b= {r—1<O(e) and ® — 0<O (e)} in a reaction of
order *. For kP~/* =0 (1) for the local diffusion flux in the neighborhood of

0= we have

(3.9

ey ’
1.325%(1_1‘@_)_2%3_) (3.10)

Let us consider the behavior of the first coefficient of series (1.13) depending on
variation of parameters » and A. The equation for b, may be written in the form
H(z, A %) =0, H(z, A %) =2 +hev — 1 (3.11)
by=2/"T (3);) By'z, A ="/3ke2'/'T (ify)

For z=0 H(,A, %) <0andfor z=1 H{, A, ) >0, Since H, >0,
hence for z > 0 Eq. (3.11) has a single root in the interval [0, 1],

Let %; <%, and =z, be arootof Eq, (3,11) for % == x; and 2, for ¥ = %, (A
is fixed in both cases), The inequality z, <7, is then satisfied, as follows from the
inequality H(zy, A, %) = 2; + Az — 1 = Az ("7 — 1) <0, Similarly, if
M <Ay and =z,* isthe root of Eq. (3.11) when A == A, or z* is such root for
A=Ay, then (for fixed x ) z,* > z,*.
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These properties and formula (3, 10) for the diffusion flux imply that in the neigh-
borhood of the leading stagnation point the local flux increases with increasing k and
diminishes with increasing reaction order.

For intermediate values of ke the sol-
ution of integral equation (1. 8) was obt-
ained by numerical methods, Function

j () for x = 1,, 1.0, and 2.0 is

, shown in Fig, 1 by dash, solid, and dash-
8.5\ ; ' dot lines, respectively.Curves 7, 2 and

! 3 3 correspond to K* = 0.1, 1 and 10.
Dependence of the total fluxon a particle
on K* isshown in Fig.2 for the same
{  values of % . In this case /, is the limit
[ flux on a sphere and corresponds to & —
oo,

Note that the representation of func-
tion (O (¢) inthe form of series(1.13) makes
possible the representation of the local
flux in the form of series

ot
JE z

e

o ) = Jxt @.12)
fovete s ot s e v S vt enaduraduumdio: wd ) (2 1
— 7 —_T aglj ™" [a4?3"'T () +
a GV I gh L
0 0.2 0.4 06 t I = ek'/ “xBy
Fig.1

The numesieal solution of the integral equation (3. 2) shows that for fairly high
K* series (3.12) can be restricted to its first two terms

I/Ia —_ —
+
/ -
/ i ./
f/ '//
0.5 -
e
2/ i
% !
// {
gm~2 10~ 1 10 K
Fig.2

for calculating the tota} flux, Thus, for example, for ® = 1/, and K* = 0.1
the contribution of the residual term is about 15% and rapidly diminishes with an in-
crease of K*; for % = 2 and K* = 0.1 this contribution is about 20%.
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Dependence of the total flux on the velocity constant can, thus, be represented in a
wide range of K*® values by the approximate formula

I ___a—'bo(K*) by (K*)
' [ + a to"

In concluding we would point out that the above results can be extended to more
complex flow fields (see, e,g., [12]).
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